

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

The Electronic Absorption Spectrum of Methanesulphenyl Chloride in the Ultraviolet Region

John M. White^a

^a Los Alamos Scientific Laboratory, University of California Los Alamos, New Mexico

To cite this Article White, John M.(1969) 'The Electronic Absorption Spectrum of Methanesulphenyl Chloride in the Ultraviolet Region', *Spectroscopy Letters*, 2: 10, 301 — 305

To link to this Article: DOI: 10.1080/00387016908050213

URL: <http://dx.doi.org/10.1080/00387016908050213>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

THE ELECTRONIC ABSORPTION SPECTRUM OF METHANESULPHENYL
CHLORIDE IN THE ULTRAVIOLET REGION *

John M. White †

Los Alamos Scientific Laboratory, University of California
Los Alamos, New Mexico 87544

Methanesulfenyl chloride (CH_3SCl) has been used frequently as a reactant, especially in the study of its addition across carbon-carbon double bonds.¹⁻⁴ In the course of preliminary chemical kinetic investigations of the gas phase chlorination of small sulfur containing molecules, quantitative ultraviolet spectra data for CH_3SCl were needed to calculate the rate of formation of reaction products. We report here the extinction coefficients for CH_3SCl in the wavelength region 2000 \AA° to 4000 \AA° . To our knowledge these have not been reported previously.

Methanesulfenyl chloride was prepared in the gas phase at 25°C by two different methods (1) mixing equimolar amounts of CH_3SH and Cl_2 and (2) mixing equimolar amounts of CH_3SSCH_3 and Cl_2 . Both methods gave identical extinction coefficients for CH_3SCl to within the overall precision of these experiments. A sample prepared by method (2) and then dissolved in CCl_4 showed a proton resonance spectrum consisting of a singlet at $\tau = 7.12$ using tetramethylsilane as a reference. This result compares well with $\tau = 7.09$ reported by Mueller and Butler⁴ for a neat sample of CH_3SCl . We therefore concluded that both methods outlined above furnish the product CH_3SCl .

Reactants were prepared as follows: (1) Chlorine, J. T. Baker, was thoroughly degassed at -130°C (n-pentane slush) and then distilled from a trap at -78°C to another at -196°C, the middle fraction being retained. (2) Methanethiol, J. T. Baker, was degassed at -130°C prior to use. (3) Methyl Disulfide, Matheson, Coleman, and Bell, was degassed at -78°C and then distilled from a trap at 0°C to another at -196°C, the middle fraction being retained.

Ultraviolet absorption spectra of the purified reagents showed no detectable impurities and gave extinction coefficients within 3% of those reported elsewhere.⁵

Reactant pressures were measured in a constant volume using a Texas Instruments quartz spiral gauge after which they were transferred to a two-chamber reaction vessel. One chamber (40 cm³) was a 10 cm long fused silica absorption cell, the other was a Pyrex sidearm (3 cm³) separated from the absorption cell by a Teflon plug stopcock. A similar stopcock separated the sidearm from the vacuum line. The reactants were mixed at 25°C with the absorption cell in the sample compartment of a Cary 14 spectrophotometer. On mixing the spectra showed a strong time dependence due to reaction and diffusion for about 2 minutes after which the optical densities changed by less than 2% in an eight hour period.

When preparative method (1) was used the spectrum was taken after mixing; then the products were separated by distillation at low temperatures. The only products detectable were HCl and CH₃SCl. HCl was determined using vapor pressure measurements and infrared analysis. The total amount of HCl produced was equal to within 4% the amount of CH₃SCl produced. As expected, the absorption spectrum between 2000 Å and 4000 Å was the same before and after the HCl was removed since HCl absorbs only weakly above 2000 Å. When preparative method (2) was used the only detectable product was CH₃SCl.

ELECTRONIC ABSORPTION SPECTRUM OF CH_3SCl TABLE I
Extinction Coefficients of CH_3SCl

λ (Å)	ϵ ($\text{M}^{-1} \text{cm}^{-1}$)	λ (Å)	ϵ ($\text{M}^{-1} \text{cm}^{-1}$)
4000	7.36 \pm 0.63		
3950	9.36 \pm 0.75	2950	3.43
3900	11.13 \pm 0.48	2900	3.52
3850	14.07 \pm 0.99	2850	4.33
3800	16.32 \pm 0.76	2800	4.87
3750	19.10 \pm 0.33	2750	5.77
3700	21.18 \pm 0.24	2700	6.67
3650	23.12 \pm 0.46	2650	8.12
3600	24.03 \pm 0.37	2600	10.47 \pm 0.92
3550	24.51 \pm 0.46	2550	15.57 \pm 0.05
3500	23.59 \pm 0.13	2500	25.8 \pm 1.9
3450	22.27 \pm 0.26	2450	46.2 \pm 5.0
3400	20.18 \pm 0.37	2400	77.0 \pm 3.2
3350	17.52 \pm 0.40	2350	128.0 \pm 6.2
3300	15.17 \pm 0.65	2300	189 \pm 10
3250	12.12 \pm 0.63	2250	263 \pm 15
3200	9.22 \pm 0.36	2200	334 \pm 19
3150	7.61 \pm 0.82	2150	376 \pm 20
3100	5.59	2100	446 \pm 22
3050	4.33	2050	628 \pm 25
3000	3.61	2000	510 \pm 24

Spectra were recorded for concentrations in the range 1.2×10^{-4} M to 1.1×10^{-3} M. The resulting data shown in Table I are averages of three or four separate measurements at each wavelength except in the region 2650 Å to 3100 Å where the absorption is very small and was not accurately determined. The values reported for this region were taken from the 1.1×10^{-3} M experiment. The uncertainties given in Table I are average deviations.

The resulting spectrum shows distinct maxima at two wavelengths, 3550 Å ($\epsilon = 24.5 \text{ M}^{-1} \text{ cm}^{-1}$) and 2055 Å ($\epsilon = 671 \text{ M}^{-1} \text{ cm}^{-1}$) and a minimum at 2950 Å. These results may be compared with those obtained by Hazeldine and Kidd⁶ for CF_3SCl which showed maxima at 3330 Å ($\epsilon = 25 \text{ M}^{-1} \text{ cm}^{-1}$) and 2140 Å ($\epsilon = 235 \text{ M}^{-1} \text{ cm}^{-1}$) in the gas phase. These same authors obtained spectra for CCl_3SCl in light petroleum and CHCl_3 solvents. Maxima occurred at 3220 Å ($\epsilon = 10.0 \text{ M}^{-1} \text{ cm}^{-1}$) and 3240 Å ($\epsilon = 12.0 \text{ M}^{-1} \text{ cm}^{-1}$) respectively. No data were reported for the 2100 Å region. Comparison of the spectra for CH_3SCl and CF_3SCl suggests that the nature of the electronic transitions is similar. Between 2000 Å and 2100 Å the spectrum of CH_3SCl shows some structure which is only partially resolved so that a meaningful vibrational spacing cannot be determined.

ACKNOWLEDGMENT

It is with pleasure that I thank N. Matwyoff for the NMR analysis.

ELECTRONIC ABSORPTION SPECTRUM OF CH_3SCl

REFERENCES

- * This work was sponsored by the U. S. Atomic Energy Commission.
- † Visiting Staff Member. Permanent address: Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712.
- 1. I. B. Douglass, "Organic Sulfur Compounds," Vol. 1, N. Kharasch, Ed., Pergamon Press, Inc., New York, 1961, pp. 350-360.
- 2. H. Brintzinger and M. Langheck, Chem. Ber., 86, 557 (1953) and references contained therein.
- 3. I. B. Douglass, J. Org. Chem., 24, 2004 (1959) and references contained therein.
- 4. W. H. Mueller and P. E. Butler, J. Am. Chem. Soc., 90, 2075 (1968).
- 5. J. G. Calvert and J. N. Pitts, Jr., "Photochemistry," John Wiley and Sons, Inc., New York, 1966.
- 6. R. N. Hazeldine and J. M. Kidd, J. Chem. Soc., 3219 (1953).